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Similarity behaviour of momentumless turbulent wakes 

By MICHAEL L.FINSON 
Avco Everett Research Laboratory, Inc., Everett, Massachusetts 02149t 

(Received 14 August 1974) 

Similarity solutions are determined for the turbulent wake of a self-propelled 
body (thrust = drag). The momentumless wake is shown to behave in a manner 
intermediate to homogeneous grid turbulence and more familiar free-shear flows 
such as the drag wake or jet. I n  essence the decay of momentumless-wake 
turbulence is similar to that of grid turbulence, but proceeds a t  a somewhat 
greater rate owing to lateral diffusion. The mean velocity difference is coupled to 
the difference a2 - v2 between the axial and radial components of the mean-square 
fluctuating velocity. It is necessary to  consider governing relations for various 
second-order turbulence quantities. Previously developed closure approximations 
yield far-wake decay rates that agree well with available measurements. Pro- 
duction of turbulent energy is negligible asymptotically; thus there is no balance 
between production and dissipation, and the far-wake behaviour does not become 
independent of the initial (near-wake) conditions. Even the radial profiles depend 
on the initial conditions, and there is no natural length scale with which t,o 
characterize the far wake. 

- -  

1. Introduction 
The evolution of turbulent wakes and jets has received much attention in 

connexion with many applications. A fundamental characteristic of such flows 
is the net momentum flux, which is (say) positive in a jet and negative in the 
wake of an unpropelled object. For a self-propelled body the thrust and drag are 
equal and there is no momentum excess or deficit in the wake. Such a wake 
represents a singular situation which has received little attention. As we shall see, 
the momentumless wake behaves rather differently from more familiar types of 
free-shear turbulence. 

I n  many respects the momentumless turbulent wake considered here represents 
a rather idealized flow situation. Only the wakes of axisymmetric non-lifting 
bodies will be considered. While the extension to two-dimensional cases would be 
straightforward, the present analysis is not applicable to lifting bodies, whose 
wakes are dominated by trailing-edge vortices. Second, for the wake to be 
momentumless it is necessary not only that the body be self-propelled (thrust 
= drag), but also that all of the drag be contained within streamlines relatively 
near the body axis. For a self-propelled body a t  supersonic speeds (Newtonian 
pressure drag), or for a submarine or other submerged object within a few body 

t Present address: Physical Sciences Inc., Wakefield, Massachusetts 01880. 
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diameters of the surface (Kelvin wave drag), a balance of momentum in the wake 
would not be achieved a t  any distance of interest. Further, we shall consider only 
the limit in which the Reynolds number tends to infinity. At any finite Re, direct 
viscous effects will enter beyond some downstream distance where the turbulence 
has decayed to such an extent that the eddy viscosity is not much greater than 
the molecular viscosity. Other effects not considered include ambient turbulence 
or stratification, buoyancy, swirl and compressibility. 

2. The difficulty with the momentumless wake 
For most types of free turbulent flow, derivation of the asymptotic similarity 

laws is straightforward (see, for example, Townsend 1956, p. 169). One separates 
the mean velocity into the free-stream velocity plus the velocity difference, and 
seeks a separable solution 

where r, is some measure of the width of the turbulent zone. With the boundary- 
layer approximation, neglect of mean pressure gradients (P  Po) and the assump- 
tion that the velocity difference is small (Ud/Uo< l ) ,  the mean momentum 
equation in the axial direction reduces to 

U = Uo+ ~ d ( X ) f ( ~ l % J 3  (1) 

UodU,/dxu eU,/r&. (2) 

As suggested by Prandtl, the eddy viscosity 8 should be approximately constant 
across the turbulent zone and proportional to the velocity difference and the 
width: ecc Udr,. Thus 

UodU#xcc Ui/rw.  (3) 

Equation (3) involves two unknowns, &(x)  and rw(x). A second equation is 
provided by conservation of overall momentum, which for the axially symmetric 
drag wake gives 

or with ( i ) ,  udr& 2 constant. (4b) 

Equations (3) and (4b) then yield the well-known axisymmetric wake solution 
rto K x*, U, cc x-8. The corresponding laws for the two-dimensional wake and the 
two-dimensional or axially symmetric jet may be obtained in a similar manner. 

The right side of (4a) is zero for the momentumless wake and ( 4 b )  does not 
hold. A more careful examination of the basic equations is required to derive the 
proper integral relation. I n  so doing we apply the boundary-layer approximation 
a/ar - rG1, a/ax - x-l, rw/x .( 1 and the far-wake approximation Ud/Uo < 1, but 
make no assumptions regarding the magnitude of the mean pressure or fluctuating 
velocities (see Tennekes & Lumley 1972, p. 104 for a detailed discussion). Con- 
sidering first the momentum equation in the radial direction, we obtain a result 
that applies to all thin turbulent shear flows (primes are omitted from the 
fluctuating quantities) : 

P + p 3  = Po. (5) 
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For the mean momentum equation in the axial direction, ( 5 )  may be used to 
eliminate aP/ax, giving 

au a - -  i a  - 
U-+- (uz-vz)+--(ruu) = 0 

ax ax r ar 

(viscous diffusion is neglected in comparison with turbulent diffusion). The first 
term here is of order UoUdlx, while the second is of order uklx if u,(x) denotes the 
maximum r.m.s. fluctuating velocity ( 2 ) t  at x. I n  a drag wake, where 

- ua < uo, 
the second term in (6) would be small. However, this is not the case for t,he 
momentumless wake. Integrating (6) across the wake yields 

U(  U, - U )  2rrrdr = (7) 

The term on the right side of this equation was tacitly neglected in comparison 
with &U;C,A in writing down (aa), since one would expect u' < U, at large x. 
Previous studies have not used the proper integral momentum relation. Birkhoff 
13 Zarantonello (1957, p. 307) and Tennekes & Lumley (1972, p. 124) set the right 
side of (7)  to zero, and obtained r,Cc xi, UaCc 2-6. 

At this point it becomes necessary to consider governing relations for second- 
order turbulence parameters. Equation (7) indicates that the mean velocity is 
directly related to mean-square fluctuating velocities in the momentumless wake. 
The coupling between mean and higher-order turbulence parameters may not 
be describable solely through the eddy viscosity, and the usual closure approxi- 
mations may not hold. From (7), the r.m.s. fluctuating velocity should vary as 
u, N (U, Ua)4. I n  most free-shear flows u,, - Ua and the eddy-viscosity expression 
used above (e a Ua r,,,,) may be considered to be a closure approximation which is 
equivalent to u, N U,. Thus i t  may be impossible to  obtain an adequate descrip- 
tion of the momentumless wake by invoking closure a t  first order. 

The measurements performed by Naudascher ( 1965) suggest further differences 
between the momentumless wake and other free-shear flows. Whereas in most 
free-shear flows the turbulent kinetic energy results from a balance between the 
effects of production, dissipation, diffusion and convection, Naudascher found 
that the production term becomes negligible beyond about 10 diameters down- 
stream in the momentumless wake. This finding is not surprising since the pro- 
duction rate is proportional to the mean shear, and the velocity difference can 
decay quite rapidly when an integral relation such as (4a) does not hold. The 
following sections will attempt to  describe the behaviour of turbulence in 
momentumless wakes in more detail. 

30-2 
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3. Formulation for second-order turbulence quantities 
The conservation equation for a general component uiuj of the turbulent 

Reynolds-stress tensor can bt: derived from the Navier-Stokes equation (see, for 

- 

example, Rotta 1951; Hinze 1959, p. 250). For steady flow, neglecting 
diffusion terms, the result is 

au ,u i -  - a &  -av, i aui aUj a -uhuj--ukui-+-p -+- --(V.) 
U k q -  - ax, ax, p (axj ax) ax, I- 

aui au. 
( U j d j k  + ujai,)p - 2 v - 2  

i a  
P ax, ax, ax; 

viscous 

(8) 

The tensor summation convention is implied in (8). As generally interpreted, the 
first two terms on the right side describe production of ui"j by the mean shear. 
The third term on the right represents the action of pressure fluctuations 
to isotropize the turbulence; the fourth and fifth terms represent turbulent 
diffusion; and the final term describes viscous dissipat,ion. I n  its present form, 
this equation is not useful since it contains additional unknown correlations 
of fluctuating quantities: in the pressure fluctuation, turbulent diffusion and 
dissipation terms. Closure approximations are required, and for these we follow 
other investigators of second-order closure such as Rotta (1951), Donaldson 
(1972) and Hanjali6 & Launder (1972). 

The description most commonly used for the dissipation term is 

where q2 is the turbulent kinetic energy iG and A the macroscale. This 
espression reflects the fact that  dissipation should be isotropic a t  high Reynolds 
nambers. The constant k, is presumed t,o be universal, although its value will not 
prove crucial in deriving similariby laws for the momentumless wake. Note that 
two more second-order correlations (q and A) are introduced by (8), and we shall 
require a Conservation equatJion for A. 

Pressure fluctuations drive the turbulence towards isotropy. Here we follow 
Rotta's (1951) suggestion, a.s have several others: 

- p  1 ( a ~ i  - +- auj) = - k  - q -  (uiuj- $Q%Yij ) .  
p axj axi 

An additional term involving the mean shear has been omitted for simplicity, 
since that term only supplements the production terms. The ratio k,,/k, of the 
closure constants will prove to be important below. 

The turbulent transport terms in (8) are of less concern here, since they repre- 
sent neither sources nor sinks of the generalized Reynolds stress. For convenience 
we shall model them via gradient diffusion, with the diffusivity proportional to 
the eddy viscosity : 
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Various authors (Donaldson 1972; Hanjalii: & Launder 1972; Daly & Harlow 
1970) have investigat,ed more general tensor forms for gradient diffusion. 

This completes the required closure approximations, except that  a conserva- 
tion equation is required for the scale size. Such an equation has been derived by 
Rotta (1961) and more recently by Finson (1973), who made use of Kolmogorov's 
universal-equilibrium hypothesis. The scale-size equation results from the 
governing equation for the spectrum of the kinetic energy; it is necessary to 
assume the spectrum to be isotropic (only one scale size A).  With the further 
approximation that the spectra of the kinetic energy, production and dissipation 
have similar shapes in wavenumber space, the result is 

(13) 

Here d, and d ,  are closure constants. Diffusion terms are neglected here, which is 
appropriate as the scale is observed to be approximately constant across most 
free-shear flows (e.g. Demetriades 1968). 

Equations (6) and (8)-( 12) represent the required governing relat,ions, complete 
to second order in turbulence correlations. An appropriate set of dependent 
variables for the momentumless wake would be the mean velocity, the 'aniso- 
tropy ' 2- v", the kinetic energy q2, the Reynolds stress - ;ilij and the macroscale 
A. Of course, the equations for u2- w2, q2 and G can all be obtained from (8) by 
proper manipulation of the indices i andj .  

- -  

4. Similarity solution 
Axial dependence 

We seek separable solutions, as already suggested by (1) for the mean velocity. 
For t,he other variables, 

where r,~ = r/rw. Note that each component of 
profile, consistent with use of the same diffusivity for each component in ( 1  1).  

is taken to have the same radial 

If (1 )  and (1 3)  are inserted into the equation (6) for the mean velocity difference, 

where a prime represents differentiation with respect to the argument. For a 
separable solution to exist, it is necessary that d In rw/d In U,,  d In r,,./d In w:~,  
Ui/w:,: and U~( twm/r , c ) - l  all be constants. Note that the first two quantities would 
be constant for any power-law behaviour. Treating the other governing equations 
in a similar manner, additional ratios are found which must be constant for the 
existence of a separable solution. However, integration of the governing equations 
across the wake, when coupled with a relation for diffusion of mean momentum, 
provides an equivalent and more straightforward (but less formal) manner of 
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determining the far-wake decay rates. The mean diffusion equation results from 
the condition of separability applied to (14) : 

dU&x = huv,/r,, (15a) 

where h is a separation constant. Integrating the conservation equations for 
U,, q2, u2 - 02, UV and A across the wake yields 

- -  

wh = pu,u,, (15b) 
2 2  3 

U I F  - - - uvm U,r, I, - k, % r& 12, 

2 2  

u o T  = -uvn,U,rwIl- k p 2 w L r t 1 2 ,  

(EA uv u 
U - = ( 1 - d 2 ) ~ A I l + ( 1 - d l ) k d p l m f 2 .  
O ax q L r w  

Here we have six equations for six unknown functions of x. The first terms on the 
right sides of (15c- f )  are production terms, while the second are sink t,erms 
(dissipation or pressure fluctuations). /3 and the I's represent radial profile factors: 

Thus far we have retained the terms representing production of turbulent 
energy, although it has already been noted that such terms may be negligible 
in the well-developed momentumless wake. To estimate their importance we take 
the maximum kinetic energy q2 and anisotropy 2 - 2 at a distance x to be of 
order u",x). From (7)  the mean velocity difference U, is of order ut,/Uo. We further 
take the macroscale A to be proportional to r,, and assume that the eddy viscosity 
6 N umA, so that -uV = t:aU/ay N u$/U,. With these values the dissipation 
terms (those containing 12) in (15c,d,f) are of order u3,,ru,, while the production 
terms (involving I,) are N u:l;,/_Vi. Since u:,/Ui -+ 0 as x -+ co, we may indeed 
neglect the production of q2, u2 - v2 and A in the asymptotic wake. However, the 
production and dissipation terms in (15e) are both of order u:lr,/C\, so the 
production of Reynolds stress cannot be neglected. We shall proceed to determine 
the desired far-wake decay rates under the assumption that production is im- 
portant only in the equation for UV, to  be verified a posteriori. 

We now search for power-law solutions: 

V;, N xnl, N X ~ Z ,  ti);, N xn3, UV,,, N ~ ~ ~ 4 ,  rzo N xn5, A N ~ ' ~ 6 .  (16) 

Equating the axial dependence of the different terms (except those containing I,) 
of each of (16a-f)  results in four independent equations for the exponents. 
Integrating (1 5 c , f )  together yields a fifth relation, n2 + 2n, = - N,/( 1 - d,), and 
(16d,f) yield the sixth relation, n2 + 2n, = - (kp/kd) n6( 1 -d1)-l. Thus, in contrast 
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Quantity Momentuinless wake Drag wake 

Velocity difference n1 - 1.636 (--$;) -0.667 (-8) 
Kinetic energy n2 - 1-455 (-$f) - 1.333 ( - t )  
Degree of anisotropy n3 - 1.636 ( - + f )  - 1.333 ( - 2 )  
Reynolds stress n 4  -2.364 (-$f) - 1.333 ( -$) 
Wake width n.5 0.276 (is<) 0.333 (4) 
Macroscale ''L 6 0.276 (I$-) 0.333 (4) 

TABLE 1. Power-law solutions (d, = 0.7, kJkd = 1.2) 

to most turbulent shear flows, the closure constants affect the asymptotic power 
laws; t,he results are 

This solution seems quite complicated, but it can be put into better perspective 
by comparison with the decay of grid turbulence. For homogeneous (but not 
necessarily isotropic) grid turbulence, the governing relations are far more simple 
than (15): 

UodAldx = ( 1  - d l )  k d p .  ( 1 8 c )  

These yield the following power-law solution: 

42 K x-l/($-dI) w2 K x-kp/kd($--dl), A K ~ ( 1 - d I ) / ( $ - d l ) .  (19a-c) 

We may turn to grid-turbulence measurements to establish the closure constant 
d, and the ratio k,/kd. (Presumably, the second-order closure formulation has 
sufficient universality to  be applicable to both homogeneous turbulence and 
shear turbulence.) Comte-Bellot & Corrsin (1966, 1971) have compiled a con- 
siderable quantity of grid-turbulence data. They found that their data and those 
of others gave q2cc x--(1'25k0'05) and AK x035-040. Thus we take d, = 0.70 _+ 0.05. 
Similarly, the Comte-Bellot & Corrsin dataindicate w2cx x-l 50, which, from (19  c), 
suggests kp/kd = 1.2. This ratio must be considered to be less certain than the 
value determined ford,. Rotta (1951)  and Hanjali6 & Launder (1972)  have deter- 
mined larger values for Ic,/k, in the range 2-5-3.0. However, their results were 
based on data obtained in strongly contracted ducts, and it may be that the 
contractions cause local anisotropy in the dissipation rate which complicates the 
evaluation of the pressure fluctuation term. 

Table 1 presents the numerical values for the power-law solutions. The 
fractional values indicated are obtained by expressing the closure constants d, 
and kplkd as rational fractions (e.g. d ,  =A). Also shown for comparison in 
table 1 are the appropriate values for the drag wake. Note that the momentumless 
and drag wakes do not differ significantly regarding the behaviour of the kinetic 
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FIGURE 1.  Comparison of similarity solution with the measurements of Naudascher (1965) 
and Merritt (1974) for the wake width. -, &; 0, Naudascher; x , Merritt. 
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FIGURE 2. Comparison of similarity solution z - s  with the measurements of Naudascher 
(1965) for the turbulent energy. 

FIGURE 3. Comparison of similarity solution with the measurements of Naudasclier (1965) 
for the mean velocity difference (circles) and the difference t!: - vk between the axial and 
radial components of the mean-square fluctuating velocity (crosses). 
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FIGURE 4. Comparison of similarity solution with the measurements of Naudascher 

(1965) for (a) the Reynolds stress and ( b )  the turbulent macroscale. 

energy (nJ, wake width (n5) or macroscale (no), but the velocity difference (al), 
degree of anisotropy (n3) and Reynolds stress (n4) decay much more rapidly in the 
momentumless wake. 

Figures 1-4 compare the predicted far-wake behaviour with Naudascher's data. 
Evidently the growth or decay rates approach similarity values 20-40 diameters 
behind the body, although this distance could depend on the configuration of the 
generating body. Merritt's (1974) wake-width measurements, obtained visually 
from a wake into which dye was injected, are included in figure 1. It is somewhat 
unfortunate that experimental inaccuracies are greatest for the quantities U, 
and w2,, which are the most sensitive tests of the theory. Owing to the differencing 
required, data cannot be obtained a t  large downstream distances for either 
quantity. We claim that the comparisons with the data for U, and wk are adequate 
for the range of values of kJk, indicated. 

Finally, if the omitted production terms are evaluated using the solution 
obtained here, it is found that such terms decay a t  a greater rate than do the 
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convection and dissipation terms as long as Ic,/k, 2 0.2. It seems certain that 
k,/k, 2 1.0, so the power-law solution expressed by (17) is a self-consistent 
solution to (15). It might also be noted that a power-law solution cannot be 
obtained from (15) if all the production terms are presumed to be important. 
Physically, this results from the fact that ( 7 )  requires the mean velocity to decay 
too rapidly for production of turbulent energy to remain important. Nor does 
a power-law solution result if all the production terms are dropped from (15): 
the decay of the Reynolds stress is sufficiently more rapid than that of the kinetic 
energy for the source term to remain in balance in (15e). 

Radial projiles 

We now turn to the other half of the separable solution: the determination of the 
self-preserving radial profiles for the various quantities. Equation (14) above is 
the governing relation for the mean velocity - -  profile f (q), and corresponding 
equations for the radial variation of q2 or u2 - v2 = w2 and= can be obtained from 
(8)-(11). It is readily apparent from (14) that these equations will be coupled, 
and that complicates the determination off(q), g(q)  and h(q). However, with the 
additional approximation that the eddy viscosity is constant across the wake, 
the equations can be decoupled to such an extent that f (7) and g(q) can be derived 
straightforwardly. We shall not attempt to determine the Reynolds-stress profile 

According to Naudascher’s measurements the eddy-viscosity coefficient is 
roughly constant over the inner portion of the wake. Comparable observations 
have been made in most other types of free-shear turbulence. Thus we introduce 

G(X, Y) = C ( X )  aU,/ar 

into (14). With some straightforward rearrangement, the result may be expressed 

Wr). 

We have already introduced a gradient-diffusion model [equation ( 1 l)] for each 
component of the turbulent kinetic energy. Because we chose the diffusivity to 
be the same for each component, and also because the production terms are 
negligible asymptotically, the same radial profile g(y) applies to any component 
of the kinetic energy, as already implied by (13). The governing relation for 
either q2 or w2 = 3- 3 leads to the following equation for g(q) :  

We recall that C, is the ratio of the diffusivity of kinetic energy to that of mean 
momentum, h is an unknown separation constant [equation (15a)l  and is 
defined by conservation of mean momentum [equation ( 15 b ) ]  : 
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0 1 2 

7 = rbrv 

FIGURE 5. Radial profile for the kinetic energy : comparison with 
Naudascher's (1965) data. ---, predicted Gaussian profile. 

(23) 

Equation (21) for the kinetic-energy profile is homogeneous, and with the 
boundary conditions g(0) = 1 and g -+ 0 as 9 -+ co, the solution can easily be 
shown to be a Gaussian profile 

d In ru, 1 -d, y = - = -  
d In V, 

Further more 
2( 1 - d,) + Ic,/k,' 

So far the wake radius r," (?I = r / r , )  has not been precisely defined. If, as did 
Naudascher (1965), we define rw as the radial location where the r.m.s. velocity 
or q is half its value on the axis, then g( 1) = 0.25 and we must have 

h = 8 In ZC,/y. (25) 

Thus the separation constant is determined from requirements of self-consistency 
of definition. I n  figure 5 we compare the Gaussian profile with Naudascher's 
measurements a t  downstream distances in the range 5 < x /D < 50. AsNaudascher 
recognized, the kinetic-energy profile is very well represent,ed by a Gaussian 
profile. 

Equation (20) shows that 2- 3 serves as an inhomogeneous source term for 
the mean velocity profile. If we introduce z = - +yhr12, (20) becomes 

[ 3 z- d2f +( l - z ) -+ - f=  df 1 -- B g-2yz- , 
dZ2 dz 2y 2.1 

where g ( x )  = exp(z/2C,). The homogeneous solution is a confluent hyper- 
geometric function, often denoted by N (  - (Zy)-l, 1, z )  or @( - (2y)-l, 1,z). The 
complementary solution involves a logarithmic singularity a t  the origin (Abramo- 
witz & Stegun 1964, p. 504), which is inconsistent with the boundary condition 
f (0)  = 1. We have not succeeded in obtaining a complete solution to (26) in terms 
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FIGURE C. Radial profiles for the mean velocity difference. --, present theory, 
/3 = 0.03, 2C, = 1. Naudascher’s data: 0 ,  x / D  < 7 ;  0, x / D  > 10. 

of analytical functions. However, a series solution can be determined in a 
st)raightforward manner: 

f ( ~ )  = C Akzk, 
k=O 

k - (2y)-1 
A,..+, = (k+ 1 ) 2  

A , =  1. 

(27) 

This reduces to the series for the confluent hypergeometric function for J5’ = 0. 
In Naudascher’s experiment, the appropriate value of J5’ was approximately 

0.03. For such a small value of /3, the radial profiles differ negligibly from the 
homogeneous solution. Figure 6 compares Naudascher’s data with the profiles 
computed numerically from (27) with 2Ce = 1 and Ic,/k, = 1.2 and 2 .5 .  For 
k,,lk,l = 1.2, the comparison is quite good; for k,lk,l = 2.5, rather good agreement 
w-ould have resulted from a, smaller value of 2Ce (g 0.5).  The computed profiles 
exhibit a slight positive overshoot at large 7, due perhaps to the crudity of the 
present treatment a t  the outer edges of the wake, where intermittency effects are 
large. It is also worth noting that,, strictly speaking, the radial profile for the 
mean velocity depends upon p. This quantity is determined by the initial condi- 
tions, with the result that the radial velocity profile may not be exactly the same 
for all momentumless wakes. 

5.  Discussion 
The momentumless wake represents a type of turbulent flow which is inter- 

mediate to homogeneous grid turbulence and the more familiar type of free-shear 
turbulence such as the drag wake, jet and mixing layer. I n  essence, the decay of 
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turbulence in a momentumless wake is very similar to the decay of grid turbu- 
lence, but proceeds a t  a somewhat greater rate owing to  lateral diffusion. To show 
this explicitly we examined the limiting case of a wake where there is no mean 
shear and where the turbulence is initially isotropic.t I n  terms of the above 
equations, this corresponds to the limit ,!? + 0. Of course equation (15e) for the 
Reynolds stress is degenerate and it is necessary to introduce an additional 
relation for the diffusivity of the turbulent kinetic energy. This may be done by 
assuming €a qA (as have several authors) or by going to third-order closure (as 
modelled by Hanjalii: & Launder 1972). By either approach, it can be shown that 
the exponents for the power-law decay of the kinetic energy (nz) and the growth 
of the wake width (n5) and macroscale (n6) are precisely as given by (17 b, d )  above. 
Thus the decay of turbulent energy in and the lateral spreading of a momentum- 
less wa.ke are completely independent of mean shear effects. 

It may further be shown that the momentumless wake does not possess the 
strong degree of similarity which characterizes the drag wake (or jet or mixing 
layer). As in other free-shear flows, there is an asymptotic separable solution for 
the momentumless wake. But this solution involves the initial (i.e. near-wake) 
conditions, in contrast to other types of flow. I n  the asymptotic drag wake there 
is a balance between turbulent production and dissipation. The effects of the 
initial conditions disappear, and there is a natural velocity scale U ,  and a natural 
length scale (C,A)$ with which to normalize all quantities. For example it is well 
known that the velocity difference and wake width obey the following relations 
in the asymptotic turbulent drag wake: 

where li, and K 2  are universal constants. 
Because the production terms are asymptotic all^ negligible for the momen- 

tumless wake (except in the Reynolds-stress equation), initial values of the 
turbulence parameters affect the far-wake solution. This is apparent from the 
manner in which (15) had to be solved. Without the production terms, only four 
relations for the six unknown exponents n,, . . ., n6 result from comparing the 
various terms in each of (15). The other two equations have to be obtained by 
integrating (15c) in conjunction with (15d ) ;  

and (15c) in conjunction with (lsf), 

(29b)  2 2  2 A/Ai = (qmrw/qln,  i ~ 5 ,  i)"(l41', 

where a subscript i indicates an initial (near-wake) value. These initial values 
propagate through the solution, appearing in the factors multiplying the powers 
of x. Mathematical complexity prevents us from explicitly deriving these factors. 

The fact that there is no natural length scale in the momentumless wake 
analogous to (C, A)* in the drag wake can be demonstrated formally. If an integral 

t The author is indebted to Professor L. S. G. Kovasznay for suggesting this exercise. 
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moment of the mean velocity were conserved, then a length scale L could be 
defined by 

f ( r / r w ) r m d r  = UOUdrgtl 

The m = 1 moment yields (CDA)3 for the drag wake. Taking the rm moment of 
the mean momentum equation (with the eddy-viscosity approximation for the 
turbulent transport term) yields 

(31) 

The only possible power which would yield a constant value for the integral in 
(30) is nz + 1 = - nl/n5. From the power-law solution presented above this corre- 
sponds to  m = - 1 - y-l = 1 + (k,/k,) ( 1  - d,)-l, or m 5 for kJkd g 1.2 and 
1 - d  g 0.3. With thisvalueofm, the products Udr;+' andwirzf'areindependent 
of x. Since g(y) is Gaussian. the integral in the last term in (31) has a constant, 
finite value and the derivative yields zero for that term. However the other term 
on the right side is not zero for m =i= 1.  This proves that there is no unique length 
L as defined by (30)) but it also introduces a paradox since m has been chosen 
such that Udr;+l = constant. The paradox is resolved by noting that the integral 
f r m d y  does not converge form = - 1 - y- l .  For large y the homogeneous portion 
of the solution for f (y ) ,  the confluent hypergeometric function, goes as yl/r 
(Abramowitz & Stegun 1964, p. 508). Thus the integrand f (y )  y m  N 7-1 and the 
integral is not finite. 

Finally, we might comment on the fact that a rather involved set of second- 
order turbulence parameters had to be considered in order to derive the basic 
similarity laws for the momentumless wake. It was claimed that the set chosen 
above, u2 - v2, q, u;V and A, was sufficient, and it is possible to examine the solution 
in retrospect to  determine whether this set is necessary or whether some approxi- 
mations might have been introduced for some of the parameters. Of course, the 
form of the mean momentum equation dictates computing 2 - v", and it is hard 
to  imagine going to second order without solving for the kinetic energy qz.  On the 
other hand, our solution indicates that n5 = n6, or Rlr, = constant. This might 
have been anticipated froin experience with other free-shear flows, and suggests 
that one might have dispensed with a conservation equation for A in favour of 
11 = KrtL,. However if one attempts to  derive the similarity laws along such lines, 
it is found that the constant K appears in the power-law exponents a t  the expense 
of the quantity 1 - d,. Whereas 1 - dl can be fixed with some precision by analysis 
of grid-turbulence data, the value of the constant K is not accurately known for 
drag wakes and could not be extrapolated to the momentumless wake with any 
confidence. I n  fact, Naudascher (1965) attempted to derive similarity laws using 
second-order modelling but failed to obtain concrete results because he did not 
consider the scale-size equation. The one equation in our set which is perhaps 
superfluous is that for the Reynolds stress -%. The solution indicates that 
6 K qR and one could have introduced the approximation e cc qR without the 

- -  
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constant of proportionality affecting the solution in a fundamental manner. It is 
interesting to note that this proportionality is assured by the presence of the 
production term in the Reynolds-stress equation. 
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